Blood pressure-renal blood flow relationships in conscious angiotensin II- and phenylephrine-infused rats.
نویسندگان
چکیده
Chronic ANG II infusion in rodents is widely used as an experimental model of hypertension, yet very limited data are available describing the resulting blood pressure-renal blood flow (BP-RBF) relationships in conscious rats. Accordingly, male Sprague-Dawley rats (n = 19) were instrumented for chronic measurements of BP (radiotelemetry) and RBF (Transonic Systems, Ithaca, NY). One week later, two or three separate 2-h recordings of BP and RBF were obtained in conscious rats at 24-h intervals, in addition to separate 24-h BP recordings. Rats were then administered either ANG II (n = 11, 125 ng·kg(-1)·min(-1)) or phenylephrine (PE; n = 8, 50 mg·kg(-1)·day(-1)) as a control, ANG II-independent, pressor agent. Three days later the BP-RBF and 24-h BP recordings were repeated over several days. Despite similar increases in BP, PE led to significantly greater BP lability at the heart beat and very low frequency bandwidths. Conversely, ANG II, but not PE, caused significant renal vasoconstriction (a 62% increase in renal vascular resistance and a 21% decrease in RBF) and increased variability in BP-RBF relationships. Transfer function analysis of BP (input) and RBF (output) were consistent with a significant potentiation of the renal myogenic mechanism during ANG II administration, likely contributing, in part, to the exaggerated reductions in RBF during periods of BP elevations. We conclude that relatively equipressor doses of ANG II and PE lead to greatly different ambient BP profiles and effects on the renal vasculature when assessed in conscious rats. These data may have important implications regarding the pathogenesis of hypertension-induced injury in these models of hypertension.
منابع مشابه
A specific competitive antagonist of the vascular action of angiotensin. II.
The effect of l-Asn-8-Ak-angiotensin II (Asn-Arg-Val-Tyr-Val-His-Pro-Ala) on the vascular action of angiotensin II was studied with rabbit aortic strips, pithed rats, and conscious rats. Dose-response (contraction) curves for angiotensin II on rabbit aortic strips shifted progressively to the right with increasing bath concentrations of l-Asn-8-Ala-angiotensin II. The pA2 value (an indication o...
متن کاملSelective increase in renal arcuate innervation density and neurogenic constriction in chronic angiotensin II-infused rats.
This study investigated the effects of angiotensin II "slow pressor" hypertension on structure and function of nerves supplying the renal vasculature. Low-dose angiotensin II (10 ng/kg per minute, initially sub-pressor) or saline vehicle was infused intravenously for 21 days in rats, and the effects were compared in renal and mesenteric arteries. Mean arterial pressure averaged 12+/-2 mm Hg hig...
متن کاملExogenous and endogenous angiotensin‐II decrease renal cortical oxygen tension in conscious rats by limiting renal blood flow
KEY POINTS Our understanding of the mechanisms underlying the role of hypoxia in the initiation and progression of renal disease remains rudimentary. We have developed a method that allows wireless measurement of renal tissue oxygen tension in unrestrained rats. This method provides stable and continuous measurements of cortical tissue oxygen tension (PO2) for more than 2 weeks and can reproduc...
متن کاملBrain renin-angiotensin system and ouabain-induced sympathetic hyperactivity and hypertension in Wistar rats.
In Dahl salt-sensitive rats on a high salt diet or normotensive rats with chronic central infusion of sodium, increased brain "ouabain" results in sympathetic hyperactivity and hypertension, possibly by activating the brain renin-angiotensin system. In the present study, we tested whether the hypertension caused by exogenous ouabain also depends on activation of brain renin-angiotensin system. ...
متن کاملThe effects of Mas receptor antagonist (A779) and renal perfusion pressure on serum nitrite concentration in male and female rats when angiotensin II receptors 1 & 2 were blocked
Introduction: Renin angiotensin system has an important role in blood pressure and renal functions. Active angiotensin-converting enzyme 2 converts angiotensin I into angiotensin-(1-7) which is a vasodilator hormone and interacts with nitric oxide changes as well as other angiotensin II receptors. In this study we evaluated the role of Mas receptor antagonist (A779) and renal perfusion press...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 305 7 شماره
صفحات -
تاریخ انتشار 2013